Rapid and accurate predictions of perfect and defective material properties in atomistic simulation using the power of 3D CNN-based trained artificial neural networks

Author:

Peivaste Iman,Ramezani Saba,Alahyarizadeh Ghasem,Ghaderi Reza,Makradi Ahmed,Belouettar Salim

Abstract

AbstractThis article introduces an innovative approach that utilizes machine learning (ML) to address the computational challenges of accurate atomistic simulations in materials science. Focusing on the field of molecular dynamics (MD), which offers insight into material behavior at the atomic level, the study demonstrates the potential of trained artificial neural networks (tANNs) as surrogate models. These tANNs capture complex patterns from built datasets, enabling fast and accurate predictions of material properties. The article highlights the application of 3D convolutional neural networks (CNNs) to incorporate atomistic details and defects in predictions, a significant advancement compared to current 2D image-based, or descriptor-based methods. Through a dataset of atomistic structures and MD simulations, the trained 3D CNN achieves impressive accuracy, predicting material properties with a root-mean-square error below 0.65 GPa for the prediction of elastic constants and a speed-up of approximately 185 to 2100 times compared to traditional MD simulations. This breakthrough promises to expedite materials design processes and facilitate scale-bridging in materials science, offering a new perspective on addressing computational demands in atomistic simulations.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3