Author:
Zhang Yu,Deng Yan,Zheng Zimin,Yao Yao,Liu Yicai
Abstract
AbstractEnergy storage technology is the key to achieving a carbon emission policy. The purpose of the paper is to improve the overall performance of the combined cooling, heating and power-ground source heat pump (CCHP-GSHP) system by the battery. A new operation strategy (the two-point operation) is proposed by controlling the power generation unit work. The power generation unit has two operation modes of non-operation and rated efficiency operation by the storage electricity battery. The new operation strategy is compared with the traditional CCHP-GSHP that without a battery. The optimization goals include the primary energy saving ratio, the reduction ratio of carbon dioxide emissions, and the annual total cost saving ratio. The independent GSHP system is used as a reference system. Multipopulation genetic algorithms are selected to achieve the problem of optimization. A hotel building is selected for a case study. The optimal configuration of the coupling system is computed following the electric load strategy. Finally, the results show that the CCHP-GSHP system has a better performance under the new operation strategy compared with the traditional CCHP-GSHP (the primary energy saving ratio increases by 5.5%; the annual carbon dioxide emission reduction ratio increases by 1%; the annual total cost reduction ratio increases by 5.1%). This paper provides reference and suggestions for the integration and operation strategy of CCHP-GSHP in the future.
Funder
Fundamental Research Funds for Central Universities of the Central South University
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献