Synthesis of novel carbon-supported iron oxide sorbents for adsorption of dye from aqueous solutions: equilibrium and flow-through studies

Author:

Khumalo Siphesihle Praise-God,Lokhat David,Chetty Kimbelin,Chetty Latisha

Abstract

AbstractTextile effluents contain dyes that negatively affect water bodies and inhibit photosynthesis by reducing sunlight penetration. This study investigated the adsorption capacity of an iron oxide sorbent immobilised on naturally derived carbon foam for the removal of organic methylene blue dye from water. In this study, the carbon precursor and iron oxide precursor were mixed and carbonised in a single vessel. Baking and carbonization of the natural grain combination produce a porous structure that can act as an effective support for the iron oxide particles. The carbon foam prepared had a self-assembled structure with flour as a basic element. Sorbents of 6 weight (wt)%, 15 wt% iron, and a 0 wt% iron control sample were prepared. Transmission electron microscopy (TEM) and Brunauer–Emmett–Teller (BET) techniques were used to examine the synthesised carbon foam physical properties and surface morphology. The adsorption capabilities were investigated in batch tests by determining the effects of an increase in iron content, sorbent dosage, contact time, and dye concentration. Breakthrough curves were obtained by varying the height of the sorbent bed and varying the flowrate of the dye solution. A higher bed height corresponds to a greater amount of adsorbent. The breakthrough and equilibrium adsorption capacities were found to increase with increasing bed height. When the flow rate is high, the dye solution leaves the column before equilibrium, resulting in shorter breakthrough and saturation times. Higher bed heights and lower flow rates resulted in optimal dye removal in the flow through the system. Breakthrough time increases with increasing iron content. The 15 wt% iron sample displayed superior adsorption capabilities than the 6 wt% sample, while the 0 wt% iron control sample displayed minimal adsorptive capabilities. The pseudo-first order kinetic model was the best fit model for this study (R2 > 0.96), and the adsorption equilibrium is best described by the Freundlich isotherm (R2 > 0.99). The results showed that an iron oxide sorbent immobilised on carbon foam made from natural sources is a good adsorbent for removing methylene dye.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3