Predicting the in-game status in soccer with machine learning using spatiotemporal player tracking data

Author:

Lang SteffenORCID,Wild Raphael,Isenko Alexander,Link Daniel

Abstract

AbstractAn important structuring feature of a soccer match is the in-game status, whether a match is interrupted or in play. This is necessary to calculate performance indicators relative to the effective playing time or to find standard situations, ball actions, and other tactical structures in spatiotemporal data. Our study explores the extent to which the in-game status can be determined using time-continuous player positions. Therefore, to determine the in-game status we tested four established machine learning methods: logistic regression, decision trees, random forests, and AdaBoost. The models were trained and evaluated using spatiotemporal data and manually annotated in-game status of 102 matches in the German Bundesliga. Results show up to 92% accuracy in predicting the in-game status in previously unknown matches on frame level. The best performing method, AdaBoost, shows 81% precision for detecting stoppages (longer than 2 s). The absolute time shift error at the start was ≤ 2 s for 77% and 81% at the end for all correctly predicted stoppages. The mean error of the in-game total distance covered per player per match using the AdaBoost in-game status prediction was − 102 ± 273 m, which is 1.3% of the mean value of this performance indicator (7939 m). Conclusively, the prediction quality of our model is high enough to provide merit for performance diagnostics when teams have access to player positions (e.g., from GPS/LPM systems) but no human-annotated in-game status and/or ball position data, such as in amateur or youth soccer.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3