Effective adsorption of fluorescent congo red azo dye from aqueous solution by green synthesized nanosphere ZnO/CuO composite using propolis as bee byproduct extract

Author:

Radwan Ahmed,Mohamed Samir O.,Khalil Mostafa M. H.,El-Sewify Islam M.

Abstract

AbstractThe indirect dumping of massive volumes of toxic dyes into water has seriously affected the ecosystem. Owing to the many applications of the designed nanomaterials in the manufacturing process, there is a lot of research interest in synthesizing nanomaterials using green processes. In this research, the byproduct of bee was employed to synthesize nanoparticles (NPs) of ZnO, CuO, and biosynthesized ZnO/CuO (BZC) nanocomposite via utilizing a green and simple approach. To validate the effective fabrication of BZC nanocomposite, various characterization measurements were applied. FTIR analysis identified the functional groups in charge of producing nanoparticles and nanocomposites. Moreover, the existence of ZnO and CuO XRD peaks suggests that the nanocomposites were successfully biosynthesized. The high-resolution XPS spectrum of the BZC nanocomposite’s Zn2p3, Cu2p3, and O1s were observed. Our findings indicate the successful engineering of the prepared nanomaterials and BZC nanocomposite. Our findings indicate the successful engineering of the prepared nanomaterials and BZC nanocomposite. For Congo red (CR) fluorescent stain azo dye elimination in water, all adsorption parameters were examined at room temperature. Moreover, the adsorption experiments revealed the removal capacity for uptake CR dye using BZC nanocomposite (90.14 mg g−1). Our results show that the BZC nanocomposite exhibited high removal capability for the adsorption of CR dye. The nanosphere adsorbent offered a simple, low-cost, and green approach for water purification and industrial wastewater control.

Funder

Ain Shams University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3