A numerical approach for preventing the dispersion of infectious disease in a meeting room

Author:

Ahmadzadeh Mahdi,Shams Mehrzad

Abstract

AbstractAirborne transmission of respiratory aerosols carrying infectious viruses has generated many concerns about cross-contamination risks, particularly in indoor environments. ANSYS Fluent software has been used to investigate the dispersion of the viral particles generated during a coughing event and their transport dynamics inside a safe social-distance meeting room. Computational fluid dynamics based on coupled Eulerian–Lagrangian techniques are used to explore the characteristics of the airflow field in the domain. The main objective of this study is to investigate the effects of the window opening frequency, exhaust layouts, and the location of the air conditioner systems on the dispersion of the particles. The results show that reducing the output capacity by raising the concentration of suspended particles and increasing their traveled distance caused a growth in the individuals' exposure to contaminants. Moreover, decreasing the distance between the ventilation systems installed location and the ceiling can drop the fraction of the suspended particles by over 35%, and the number of individuals who are subjected to becoming infected by viral particles drops from 6 to 2. As well, the results demonstrated when the direction of input airflow and generated particles were the same, the fraction of suspended particles of 4.125%, whereas if the inputs were shifted to the opposite direction of particle injection, the fraction of particles in fluid increased by 5.000%.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3