Development of an insilico model of eccrine sweat using molecular modelling techniques

Author:

Deshpande Parijat,Ravikumar Bharath,Tallur Siddharth,Paul Debjani,Rai Beena

Abstract

AbstractEccrine sweat is an ideal surrogate diagnostic biofluid for physiological and metabolic biomarkers for wearable biosensor design. Its periodic and non-invasive availability for candidate analytes such as glucose and cortisol along with limited correlation with blood plasma is of significant research interest. An insilico model of eccrine sweat can assist in the development of such wearable biosensors. In this regard, molecular modelling can be employed to observe the most fundamental interactions. Here, we determine a suitable molecular model for building eccrine sweat. The basic components of sweat are water and sodium chloride, in which glucose and other analytes are present in trace quantities. Given the wide range of water models available in the molecular dynamics space, in this study, we first validate the water models. We use three compounds to represent the base to build bulk sweat fluid and validate the force fields. We compare the self-diffusivity of water, glucose, sodium, and chloride ions as well as bulk viscosity values and present the results which are > 90% accurate as compared with the available literature. This validated insilico eccrine sweat model can serve as an aid to expedite the development de novo biosensors by addition of other analytes of interest e.g. cortisol, uric acid etc., simulate various temperatures and salt concentrations, expand search space for screening candidate target receptors by their binding affinity and assess the interference between competing species via simulations.

Funder

Tata Consultancy Services,India

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3