Dynamic stability analysis method of anchored rocky slope considering seismic deterioration effect

Author:

Jia Jinqing,Gao Xing,Bao Xiaohua,Xiang Xin,Zhang Lihua,Tu Bingxiong

Abstract

AbstractThe seismic deterioration effects of anchor cables and slope structural planes are often neglected in the dynamic stability analysis of anchored rocky slopes to the extent that the stability of slopes is overestimated. In this paper, a dynamic calculation method for anchored rocky slopes considering the seismic deterioration effect is established, and a stability evaluation method for anchored rocky slopes based on the Gaussian mixture model is proposed. The seismic deterioration effect on the stability of anchored rocky slopes is quantitatively analyzed with an engineering example, and the relationship between seismic intensity and the failure probability of slopes is clarified. The results show that compared with the calculation method without considering the seismic deterioration effect, the minimum safety factor and post-earthquake safety factor obtained by the proposed method in this paper are smaller. The number of seismic deteriorations of the slope is used as the number of components of the Gaussian mixture model to construct the failure probability model of the slope, which can accurately predict the failure probability of anchored rocky slopes. The research results significantly improve the accuracy of the stability calculation of anchored rocky slopes, which can be used to guide the seismic design and safety assessment of anchored rocky slopes.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Collaborative Innovation Platform Project of Fuzhou-Xiamen-Quanzhou National Self-Innovation Zone

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3