Vagus nerve stimulation using a miniaturized wirelessly powered stimulator in pigs

Author:

Habibagahi Iman,Omidbeigi Mahmoud,Hadaya Joseph,Lyu Hongming,Jang Jaeeun,Ardell Jeffrey L.,Bari Ausaf A.,Babakhani Aydin

Abstract

AbstractNeuromodulation of peripheral nerves has been clinically used for a wide range of indications. Wireless and batteryless stimulators offer important capabilities such as no need for reoperation, and extended life compared to their wired counterparts. However, there are challenging trade-offs between the device size and its operating range, which can limit their use. This study aimed to examine the functionality of newly designed wirelessly powered and controlled implants in vagus nerve stimulation for pigs. The implant used near field inductive coupling at 13.56 MHz industrial, scientific, and medical band to harvest power from an external coil. The circular implant had a diameter of 13 mm and weighed 483 mg with cuff electrodes. The efficiency of the inductive link and robustness to distance and misalignment were optimized. As a result, the specific absorption rate was orders of magnitude lower than the safety limit, and the stimulation can be performed using only 0.1 W of external power. For the first time, wireless and batteryless VNS with more than 5 cm operation range was demonstrated in pigs. A total of 84 vagus nerve stimulations (10 s each) have been performed in three adult pigs. In a quantitative comparison of the effectiveness of VNS devices, the efficiency of systems on reducing heart rate was similar in both conventional (75%) and wireless (78.5%) systems. The pulse width and frequency of the stimulation were swept on both systems, and the response for physiological markers was drawn. The results were easily reproducible, and methods used in this study can serve as a basis for future wirelessly powered implants.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3