Author:
Mafakheri Fariba,Khoee Sepideh
Abstract
AbstractIn this work, we report the design and synthesis of internal energy-driven Janus nanomotors (JNMs), which are composed of certain reactive materials that are capable of converting chemical energy in the backbone of nanomotors into kinetic energy. For this purpose, superparamagnetic iron oxide nanoparticles (SPIONs) with the anisotropic surface were obtained via a Pickering emulsion. Modified chitosan (as hydrophilic polymer) and functionalized polycaprolactone (as hydrophobic domain) were covalently linked to the surface of bi-functional SPIONs to produce Janus nanoparticles (JNPs). Then, the CALB enzyme was loaded in the PCL hemisphere of JNPs to form the Janus nanomotor. When nanomotors are placed in the phosphate-buffered saline solution, the driving force for motion is provided by the decomposition of polyester into monomers and oligomers on one side of the JNMs. The trajectories of the nanomotors were recorded under different circumstances by a video microscope and analyzed by the mean squared displacement. The results show that the velocity of JNMs increases with an increasing percentage of the loaded enzyme. In addition, the diffusion coefficient enhances up to 87.67% in compared with nanoparticles without enzyme. Controlling the motion direction of JNMs by an external magnetic field is also possible, due to the presence of SPIONs.
Funder
Iran National Science Foundation
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献