Testing novel facial recognition technology to identify dogs during vaccination campaigns

Author:

Czupryna Anna Maria,Estepho Mike,Lugelo Ahmed,Bigambo Machunde,Sambo Maganga,Changalucha Joel,Lushasi Kennedy Selestin,Rooyakkers Philip,Hampson Katie,Lankester Felix

Abstract

AbstractA lack of methods to identify individual animals can be a barrier to zoonoses control. We developed and field-tested facial recognition technology for a mobile phone application to identify dogs, which we used to assess vaccination coverage against rabies in rural Tanzania. Dogs were vaccinated, registered using the application, and microchipped. During subsequent household visits to validate vaccination, dogs were registered using the application and their vaccination status determined by operators using the application to classify dogs as vaccinated (matched) or unvaccinated (unmatched), with microchips validating classifications. From 534 classified dogs (251 vaccinated, 283 unvaccinated), the application specificity was 98.9% and sensitivity 76.2%, with positive and negative predictive values of 98.4% and 82.8% respectively. The facial recognition algorithm correctly matched 249 (99.2%) vaccinated and microchipped dogs (true positives) and failed to match two (0.8%) vaccinated dogs (false negatives). Operators correctly identified 186 (74.1%) vaccinated dogs (true positives), and 280 (98.9%) unvaccinated dogs (true negatives), but incorrectly classified 58 (23.1%) vaccinated dogs as unmatched (false negatives). Reduced application sensitivity resulted from poor quality photos and light-associated color distortion. With development and operator training, this technology has potential to be a useful tool to identify dogs and support research and intervention programs.

Funder

National Institutes of Health

Wellcome Trust

MSD Animal Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3