Electronic and optical properties of chemically modified 2D GaAs nanoribbons

Author:

Sakr Mahmoud A. S.,Saad Mohamed A.,Abdelsalam Hazem,Teleb Nahed H.,Zhang Qinfang

Abstract

AbstractWe employed density functional theory calculations to investigate the electronic and optical characteristics of finite GaAs nanoribbons (NRs). Our study encompasses chemical alterations including doping, functionalization, and complete passivation, aimed at tailoring NR properties. The structural stability of these NRs was affirmed by detecting real vibrational frequencies in infrared spectra, indicating dynamical stability. Positive binding energies further corroborated the robust formation of NRs. Analysis of doped GaAs nanoribbons revealed a diverse range of energy gaps (approximately 2.672 to 5.132 eV). The introduction of F atoms through passivation extended the gap to 5.132 eV, while Cu atoms introduced via edge doping reduced it to 2.672 eV. A density of states analysis indicated that As atom orbitals primarily contributed to occupied molecular orbitals, while Ga atom orbitals significantly influenced unoccupied states. This suggested As atoms as electron donors and Ga atoms as electron acceptors in potential interactions. We investigated excited-state electron–hole interactions through various indices, including electron–hole overlap and charge-transfer length. These insights enriched our understanding of these interactions. Notably, UV–Vis absorption spectra exhibited intriguing phenomena. Doping with Te, Cu, W, and Mo induced redshifts, while functionalization induced red/blue shifts in GaAs-34NR spectra. Passivation, functionalization, and doping collectively enhanced electrical conductivity, highlighting the potential for improving material properties. Among the compounds studied, GaAs-34NR-edg-Cu demonstrated the highest electrical conductivity, while GaAs-34NR displayed the lowest. In summary, our comprehensive investigation offers valuable insights into customizing GaAs nanoribbon characteristics, with promising implications for nanoelectronics and optoelectronics applications.

Funder

Misr University for Science & Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3