Mixture composition design of magnesium oxychloride cement-stabilized crushed stone materials applied as a pavement base

Author:

Zhang HuzhuORCID,Luo AolinORCID,Sun LijuanORCID

Abstract

AbstractConventional binding materials, such as silicate cement and lime, present high energy consumption, pollution, and carbon emissions. Therefore, we utilize crushed stone as a stabilization material. Magnesium oxychloride cement (MOC) is modified and used as an inorganic admixture owing to its eco-friendly nature and low carbon content. We analysed the control indicators of an integrated design of MOC-stabilized crushed stone by conducting unconfined compressive strength and water-resistance tests. The optimum mixing composition of the MOC-stabilized crushed stone was determined through the response surface methodology. We determined the best approach and dosage for improving the water resistance of MOC-stabilized crushed stone by comparing the effects of four modification methods: fly ash, citric acid + silica fume, phosphoric acid + waterborne polyurethane, and dihydrogen phosphate potassium salt. We also perform a comparison with 5% ordinary silicate cement-stabilized crushed stone. The results indicate that the MOC-stabilized crushed stone exhibits a rapid increase in strength in the early stage, but this rate reduces after 28 days. The mixing design employs the 4-day unconfined compressive strength and 1-day water resistance coefficient as the technical indicators. The best mixing composition includes a 4.27% MOC dosage and a molar ratio of MgO/MgCl2 of 5.85. We use 1% citric acid + 10% silica fume in equal amounts to replace the MOC dopant method for composite modification of the MOC stabilized crushed stone. Consequently, the 1-day water resistance coefficient before water immersion is significantly increased from 0.78 to 0.91 and its 4-day unconfined compressive strength is only reduced by 0.10 MPa. This significantly improves the water resistance of the MOC-stabilized crushed stone and ensures that its strength remains unaffected, which is the optimal modification method. However, this method must ensure that a small amount of citric acid and silica fume are uniformly distributed in the MOC-stabilized crushed stone, which increases the construction difficulty of the road base.

Funder

Jilin Provincial Department of Education Science and Technology Research Project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3