Mechanosensitive TRPV4 channel guides maturation and organization of the bilayered mammary epithelium

Author:

Tytti Kärki,Sanna Koskimäki,Carla Guenther,Jonatan Pirhonen,Kaisa Rajakylä,Sari Tojkander

Abstract

AbstractBiophysical cues from the cell microenvironment are detected by mechanosensitive components at the cell surface. Such machineries convert physical information into biochemical signaling cascades within cells, subsequently leading to various cellular responses in a stimulus-dependent manner. At the surface of extracellular environment and cell cytoplasm exist several ion channel families that are activated by mechanical signals to direct intracellular events. One of such channel is formed by transient receptor potential cation channel subfamily V member, TRPV4 that is known to act as a mechanosensor in wide variaty of tissues and control ion-influx in a spatio-temporal way. Here we report that TRPV4 is prominently expressed in the stem/progenitor cell populations of the mammary epithelium and seems important for the lineage-specific differentiation, consequently affecting mechanical features of the mature mammary epithelium. This was evident by the lack of several markers for mature myoepithelial and luminal epithelial cells in TRPV4-depleted cell lines. Interestingly, TRPV4 expression is controlled in a tension-dependent manner and it also impacts differentation process dependently on the stiffness of the microenvironment. Furthermore, such cells in a 3D compartment were disabled to maintain normal mammosphere structures and displayed abnormal lumen formation, size of the structures and disrupted cellular junctions. Mechanosensitive TRPV4 channel therefore act as critical player in the homeostasis of normal mammary epithelium through sensing the physical environment and guiding accordingly differentiation and structural organization of the bilayered mammary epithelium.

Funder

Academy of Finland

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3