Unveiling the mystery of scale dependence of surface roughness of natural rock joints

Author:

Li Yingchun,Yang Hongwei,Sun Shengyue

Abstract

AbstractScale dependence of surface roughness of natural rock joints has long been an outstanding issue in rock mechanics. Controversial results were reported by various studies; however, the nature of scale dependency and the underlying mechanism for the conflicting observations remain unclear. Rock joints at different scales characterise two-order asperities, namely, waviness and unevenness; thus understanding how the individual roughness of waviness and unevenness vary as the joint size increases from the laboratory-scale to the large-scale is crucial for revealing the scale effect mystery. Here we digitise three natural granite joint surfaces with the same dimension of 1000 mm × 1000 mm through a high-resolution, three-dimensional scanner. Waviness and unevenness of each rock joint surface are quantitatively separated by selecting an appropriate sampling interval. The respective fractal dimensions of waviness and unevenness of joint surfaces sized from 100 mm × 100 mm to 1000 mm × 1000 mm are estimated through an improved roughness-length method. We find that the fractal dimensions of two-order roughness are scale-dependent but without generalised trends. The stationarity threshold beyond which the scale-dependency of roughness vanishes is absent for all the three joint samples, suggesting that the roughness of natural rock joints be assessed at the specific scale of the rock mass in-situ. We reveal that previous controversial results regarding scale effect are likely due to the composition of the roughness scaling of waviness and unevenness. Thus, accurate stability analysis of rock-engineering projects should consider separate contributions of multi-order asperities across scales to the strength and deformation of jointed rock masses.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3