Fingertip tactile sensation via piezoelectric micromachined ultrasonic transducers with an amplified interface

Author:

Sone Junji

Abstract

AbstractTactile devices are often used in the field of robotics; however, the development of compact high-resolution tactile devices remains challenging. In this study, we developed a haptic device for force presentation using a DC motor and a tactile sensation device to simultaneously present haptic and tactile stimuli. A microelectromechanical system was selected to maintain the compactness of the tactile device. Piezoelectric micromachined ultrasonic transducers are known for high-power stimulation, and we selected lanthanum-doped lead zirconate titanate as the high-power amplified actuator. A finger mount structure that transfers force for amplifying ultrasonic waves was considered to combine acoustic pressure and aeroacoustics by attaching silicone rubber. The device was fabricated, and the performance of the tactile sensations was evaluated. The developed device uses the novel concept of combining acoustic pressure and aeroacoustics, and its compactness renders it suitable for wearable systems.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3