Single-cell RNA sequencing uncovers heterogenous transcriptional signatures in macrophages during efferocytosis

Author:

Lantz ConnorORCID,Radmanesh Behram,Liu Esther,Thorp Edward B.ORCID,Lin Jennie

Abstract

AbstractEfferocytosis triggers cellular reprogramming, including the induction of mRNA transcripts which encode anti-inflammatory cytokines that promote inflammation resolution. Our current understanding of this transcriptional response is largely informed from analysis of bulk phagocyte populations; however, this precludes the resolution of heterogeneity between individual macrophages and macrophage subsets. Moreover, phagocytes may contain so called “passenger” transcripts that originate from engulfed apoptotic bodies, thus obscuring the true transcriptional reprogramming of the phagocyte. To define the transcriptional diversity during efferocytosis, we utilized single-cell mRNA sequencing after co-cultivating macrophages with apoptotic cells. Importantly, transcriptomic analyses were performed after validating the disappearance of apoptotic cell-derived RNA sequences. Our findings reveal new heterogeneity of the efferocytic response at a single-cell resolution, particularly evident between F4/80+ MHCIILO and F4/80 MHCIIHI macrophage sub-populations. After exposure to apoptotic cells, the F4/80+ MHCIILO subset significantly induced pathways associated with tissue and cellular homeostasis, while the F4/80 MHCIIHI subset downregulated these putative signaling axes. Ablation of a canonical efferocytosis receptor, MerTK, blunted efferocytic signatures and led to the escalation of cell death-associated transcriptional signatures in F4/80+ MHCIILO macrophages. Taken together, our results newly elucidate the heterogenous transcriptional response of single-cell peritoneal macrophages after exposure to apoptotic cells.

Funder

U.S. Department of Health and Human Services | NIH | National Institute of General Medical Sciences

U.S. Department of Health and Human Services | NIH | National Heart, Lung, and Blood Institute

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3