Growth of microalgae and cyanobacteria consortium in a photobioreactor treating liquid anaerobic digestate from vegetable waste

Author:

Sobolewska EwelinaORCID,Borowski SebastianORCID,Nowicka-Krawczyk PaulinaORCID,Jurczak TomaszORCID

Abstract

AbstractThis research examines the biological treatment of undiluted vegetable waste digestate conducted in a bubble column photobioreactor. Initially, the bioreactor containing 3N-BBM medium was inoculated with Microglena sp., Tetradesmus obliquus, and Desmodesmus subspicatus mixture with a density of 1.0 × 104 cells/mL and the consortium was cultivated for 30 days. Then, the bioreactor was semi-continuously fed with liquid digestate with hydraulic retention time (HRT) of 30 days, and the treatment process was continued for the next 15 weeks. The change in the microalgal and cyanobacterial species domination was measured in regular intervals using cell counting with droplet method on a microscope slide. At the end of the experiment, Desmonostoc sp. cyanobacteria (identified with 16S ribosomal RNA genetical analysis) as well as Tetradesmus obliquus green algae along with Rhodanobacteraceae and Planococcaceae bacteria (determined with V3–V4 16sRNA metagenomic studies) dominated the microbial community in the photobioreactor. The experiment demonstrated high treatment efficiency, since nitrogen and soluble COD were removed by 89.3 ± 0.5% and 91.2 ± 1.6%, respectively, whereas for phosphates, 72.8 ± 2.1% removal rate was achieved.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3