Deep compressed seismic learning for fast location and moment tensor inferences with natural and induced seismicity

Author:

Vera Rodriguez IsmaelORCID,Myklebust Erik B.

Abstract

AbstractFast detection and characterization of seismic sources is crucial for decision-making and warning systems that monitor natural and induced seismicity. However, besides the laying out of ever denser monitoring networks of seismic instruments, the incorporation of new sensor technologies such as Distributed Acoustic Sensing (DAS) further challenges our processing capabilities to deliver short turnaround answers from seismic monitoring. In response, this work describes a methodology for the learning of the seismological parameters: location and moment tensor from compressed seismic records. In this method, data dimensionality is reduced by applying a general encoding protocol derived from the principles of compressive sensing. The data in compressed form is then fed directly to a convolutional neural network that outputs fast predictions of the seismic source parameters. Thus, the proposed methodology can not only expedite data transmission from the field to the processing center, but also remove the decompression overhead that would be required for the application of traditional processing methods. An autoencoder is also explored as an equivalent alternative to perform the same job. We observe that the CS-based compression requires only a fraction of the computing power, time, data and expertise required to design and train an autoencoder to perform the same task. Implementation of the CS-method with a continuous flow of data together with generalization of the principles to other applications such as classification are also discussed.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3