Abstract
AbstractThe novel fault diagnosis method of gearbox based on Fourier Bessel series expansion-based empirical wavelet transform (FBEWT) and manifold regularization extreme learning machine (MRELM) is proposed to obtain excellent fault diagnosis results of gearbox in this paper. A new feature extraction strategy based on Fourier Bessel series expansion-based empirical wavelet transform is used to capture the key non-stationary features of the vibrational signal of gearbox, and significantly improve the diagnosis ability of gearbox. The ELM with manifold regularization is proposed for fault diagnosis of gearbox. In order to outstand the superiority and stability of the proposed FBEWT and manifold regularization ELM, the balanced dataset and unbalanced dataset, respectively, are used. The experimental results testify that FBEWT-MRELM are more superior and stable than FBEWT-ELM, EWT-MRELM, and EWT-ELM regardless of balanced dataset and unbalanced dataset.
Funder
the project of Yibin University
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献