An end-to-end computer vision methodology for quantitative metallography

Author:

Rusanovsky Matan,Beeri Ofer,Oren Gal

Abstract

AbstractMetallography is crucial for a proper assessment of material properties. It mainly involves investigating the spatial distribution of grains and the occurrence and characteristics of inclusions or precipitates. This work presents a holistic few-shot artificial intelligence model for Quantitative Metallography, including Anomaly Detection, that automatically quantifies the degree of the anomaly of impurities in alloys. We suggest the following examination process: (1) deep semantic segmentation is performed on the inclusions (based on a suitable metallographic dataset of alloys and corresponding tags of inclusions), producing inclusions masks that are saved into a separated dataset. (2) Deep image inpainting is performed to fill the removed inclusions parts, resulting in ‘clean’ metallographic images, which contain the background of grains. (3) Grains’ boundaries are marked using deep semantic segmentation (based on another metallographic dataset of alloys), producing boundaries that are ready for further inspection on the distribution of grains’ size. (4) Deep anomaly detection and pattern recognition is performed on the inclusions masks to determine spatial, shape, and area anomaly detection of the inclusions. Finally, the end-to-end model recommends an expert on areas of interest for further examination. The physical result can re-tune the model according to the specific material at hand. Although the techniques presented here were developed for metallography analysis, most of them can be generalized to a broader set of microscopy problems that require automation. All source-codes as well as the datasets that were created for this work, are publicly available at https://github.com/Scientific-Computing-Lab-NRCN/MLography.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3