Pneumonia detection based on RSNA dataset and anchor-free deep learning detector

Author:

Wu Linghua,Zhang Jing,Wang Yilin,Ding Rong,Cao Yueqin,Liu Guiqin,Liufu Changsheng,Xie Baowei,Kang Shanping,Liu Rui,Li Wenle,Guan Furen

Abstract

AbstractPneumonia is a highly lethal disease, and research on its treatment and early screening tools has received extensive attention from researchers. Due to the maturity and cost reduction of chest X-ray technology, and with the development of artificial intelligence technology, pneumonia identification based on deep learning and chest X-ray has attracted attention from all over the world. Although the feature extraction capability of deep learning is strong, existing deep learning object detection frameworks are based on pre-defined anchors, which require a lot of tuning and experience to guarantee their excellent results in the face of new applications or data. To avoid the influence of anchor settings in pneumonia detection, this paper proposes an anchor-free object detection framework and RSNA dataset based on pneumonia detection. First, a data enhancement scheme is used to preprocess the chest X-ray images; second, an anchor-free object detection framework is used for pneumonia detection, which contains a feature pyramid, two-branch detection head, and focal loss. The average precision of 51.5 obtained by Intersection over Union (IoU) calculation shows that the pneumonia detection results obtained in this paper can surpass the existing classical object detection framework, providing an idea for future research and exploration.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey on comparative study of lung nodules applying machine learning and deep learning techniques;Multimedia Tools and Applications;2024-08-20

2. Utilizing Random Forest to Diagnose Pneumonia in Children;2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT);2024-05-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3