Author:
Zhang Pengyan,Liu Chong,Lao Dongqing,Nguyen Xuan Cuong,Paramasivan Balasubramanian,Qian Xiaoyan,Inyinbor Adejumoke Abosede,Hu Xuefei,You Yongjun,Li Fayong
Abstract
AbstractThis study aimed to develop a robust predictive model for tetracycline (TC) adsorption onto biochar (BC) by employing machine learning techniques to investigate the underlying driving factors. Four machine learning algorithms, namely Random Forest (RF), Gradient Boosting Decision Tree (GBDT), eXtreme Gradient Boosting (XGBoost) and Artificial Neural Networks (ANN), were used to model the adsorption of TC on BC using the data from 295 adsorption experiments. The analysis revealed that the RF model had the highest predictive accuracy (R2 = 0.9625) compared to ANN (R2 = 0.9410), GBDT (R2 = 0.9152), and XGBoost (R2 = 0.9592) models. This study revealed that BC with a specific surface area (S (BET)) exceeding 380 cm3·g−1 and particle sizes ranging between 2.5 and 14.0 nm displayed the greatest efficiency in TC adsorption. The TC-to-BC ratio was identified as the most influential factor affecting adsorption efficiency, with a weight of 0.595. The concentration gradient between the adsorbate and adsorbent was demonstrated to be the principal driving force behind TC adsorption by BC. A predictive model was successfully developed to estimate the sorption performance of various types of BC for TC based on their properties, thereby facilitating the selection of appropriate BC for TC wastewater treatment.
Funder
President’s Foundation of Tarim University
Bingtuan Science and Technology Program
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献