Author:
Liang Tian,Hu Yuanyuan,Zhang Hong,Xu Qian,Smith Charles E.,Zhang Chuhua,Kim Jung-Wook,Wang Shih-Kai,Saunders Thomas L.,Lu Yongbo,Hu Jan C.-C.,Simmer James P.
Abstract
AbstractNon-syndromic inherited defects of tooth dentin are caused by two classes of dominant negative/gain-of-function mutations in dentin sialophosphoprotein (DSPP): 5′ mutations affecting an N-terminal targeting sequence and 3′ mutations that shift translation into the − 1 reading frame. DSPP defects cause an overlapping spectrum of phenotypes classified as dentin dysplasia type II and dentinogenesis imperfecta types II and III. Using CRISPR/Cas9, we generated a Dspp−1fs mouse model by introducing a FLAG-tag followed by a single nucleotide deletion that translated 493 extraneous amino acids before termination. Developing incisors and/or molars from this mouse and a DsppP19L mouse were characterized by morphological assessment, bSEM, nanohardness testing, histological analysis, in situ hybridization and immunohistochemistry. DsppP19L dentin contained dentinal tubules but grew slowly and was softer and less mineralized than the wild-type. DsppP19L incisor enamel was softer than normal, while molar enamel showed reduced rod/interrod definition. Dspp−1fs dentin formation was analogous to reparative dentin: it lacked dentinal tubules, contained cellular debris, and was significantly softer and thinner than Dspp+/+ and DsppP19L dentin. The Dspp−1fs incisor enamel appeared normal and was comparable to the wild-type in hardness. We conclude that 5′ and 3′ Dspp mutations cause dental malformations through different pathological mechanisms and can be regarded as distinct disorders.
Funder
National Research Foundation of Korea
Ministry of Science and Technology
National Taiwan University Hospital
National Institute of Dental and Craniofacial Research
Publisher
Springer Science and Business Media LLC
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献