Discovery of calcium-binding peptides derived from defatted lemon basil seeds with enhanced calcium uptake in human intestinal epithelial cells, Caco-2

Author:

Kheeree Norhameemee,Kuptawach Kittisak,Puthong Songchan,Sangtanoo Papassara,Srimongkol Piroonporn,Boonserm Patamalai,Reamtong Onrapak,Choowongkomon Kiattawee,Karnchanatat Aphichart

Abstract

AbstractIt is anticipated that calcium-chelating peptides may serve to enhance the absorption of calcium. This research examined defatted lemon basil seeds (DLBS) which had been treated with Alcalase under optimized parameters for the degree of hydrolysis for proteolysis, discovering that the activity for calcium-binding in a competitive condition with phosphate ion was 60.39 ± 1.545%. The purification of the hydrolysates was performed via ultrafiltration along with reversed-phase high performance liquid chromatography (RP-HPLC). Determination of the purified peptide amino acid sequence was confirmed for both peptides and reported as Ala-Phe-Asn-Arg-Ala-Lys-Ser-Lys-Ala-Leu-Asn-Glu-Asn (AFNRAKSKALNEN; Basil-1), and Tyr-Asp-Ser-Ser-Gly-Gly-Pro-Thr-Pro-Trp-Leu-Ser-Pro-Tyr (YDSSGGPTPWLSPY; Basil-2). The respective activities for calcium-binding were 38.62 ± 1.33%, and 42.19 ± 2.27%. Fluorescence spectroscopy, and fourier transform infrared spectroscopy were employed in order to assess the chelating mechanism between calcium and the peptides. It was found that the calcium ions took place through the activity of the amino nitrogen atoms and the oxygen atoms on the carboxyl group. Moreover, both of these peptides served to improve calcium transport and absorption in Caco-2 cell monolayers, depending on the concentration involved. It was revealed that the peptide-calcium complexes offered an increased calcium absorption percentage when compared to free calcium at similar concentrations. It might be concluded that the peptide within the peptide-calcium complex can promote calcium absorption through both active and passive transport pathways by increasing calcium concentration and promoting cell membrane interaction. Accordingly, DLBS protein can be considered a strong potential source of protein which can be used to produce calcium-binding peptides and might therefore play a role in the production of nutraceutical foods as a bioactive ingredient.

Funder

The Agricultural Research Development Agency (ARDA), Thailand

The Thailand Science Research and Innovation (TSRI) Fund

The Center of Excellence on Medical Biotechnology (CEMB), S&T Postgraduate Education and Research Development Office (PERDO), Office of Higher Education Commission (OHEC), Thailand

Thailand Science Research and Innovation Fund Chulalongkorn University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3