RF energy harvesting schemes for intelligent reflecting surface-aided cognitive radio sensor networks

Author:

Wang Jihong,Yu Hongquan

Abstract

AbstractEnergy harvesting (EH) is a potential solution to enhance the node sustainability and prolong the network lifetime of cognitive radio sensor networks (CRSNs). However, CRSNs nodes can only harvest energy from the direct link with energy sources, and severe path loss results in low energy utilization ratio. To solve the above problem, intelligent reflecting surface (IRS) is introduced, and a shared reflection coefficient matrix-based EH scheme is proposed for IRS-aided CRSNs in this paper. An optimization problem with the objective of maximizing the total amount of energy harvested by all CRSNs nodes is formulated, and by optimally adjusting the IRS reflection coefficient, CRSNs nodes can harvest energy from both the direct link and the cascaded reflection link via IRS, which increases the amount of harvested energy. In addition, a subsurface partition-based EH scheme is proposed to reduce the additional computational complexity brought by increasing IRS elements or CRSNs nodes. Simulation results show that the proposed schemes can both dramatically improve energy utilization ratio, and the subsurface partition-based EH scheme will bring in less than 1 percent performance loss when compared with the other scheme, i.e., reasonable subsurface partition can achieve a balance between harvested energy and computational complexity.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3