Abstract
AbstractDrug-loaded electrospun nanofibers are potential drug carrier systems that may optimize disease treatment while reducing the impact on commensal microbes. The feasibility of streptomycin-loaded pullulan nanofibers fabricated from a green electrospinning procedure using water as the solvent was assessed. We conducted a rat study including a group treated with streptomycin-loaded nanofibers (STR-F, n = 5), a group treated with similar concentrations of streptomycin in the drinking water (STR-W, n = 5), and a non-treated control group (CTR, n = 5). Streptomycin was successfully loaded into nanofibers and delivered by this vehicle, which minimized the quantity of the drug released in the ileal compartment of the gut. Ingested streptomycin-resistant E. coli colonized of up to 106 CFU/g feces, revealing a selective effect of streptomycin even when given in the low amounts allowed by the nanofiber-based delivery. 16S amplicon sequencing of the indigenous microbiota revealed differential effects in the three groups. An increase of Peptostreptococcaceae in the cecum of STR-F animals may indicate that the fermentation of nanofibers directly or indirectly promoted growth of bacteria within this family. Our results elucidate relevant properties of electrospun nanofibers as a novel vehicle for delivery of antimicrobials to the large intestine.
Funder
Novo Nordisk Foundation
Danish National Research Foundation
Villum Foundation
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献