A piecewise sine waveguide for terahertz traveling wave tube

Author:

Zhang Luqi,Jiang Yi,Lei Wenqiang,Hu Peng,Guo Jun,Song Rui,Tang Xianfeng,Ma Guowu,Chen Hongbin,Wei Yanyu

Abstract

AbstractIn this paper, a piecewise sine waveguide (PWSWG) is proposed as the slow-wave structure (SWS) to develop high-power terahertz (THz) traveling wave tubes (TWTs). The PWSWG is an improvement over the rectangular waveguide wherein its two E-planes simultaneously oscillate up and down along the longitudinal direction. The oscillation curve in the H-plane is a piecewise sine curve formed by inserting line segments into the peaks and troughs of the sine curve. The simulation analysis and experimental verification show that the PWSWG offers the advantages of large interaction impedance and excellent electromagnetic transmission performance. Furthermore, the calculation results of beam–wave interaction show that the TWT based on PWSWG SWS can generate a radiated power of 253.1 W at the typical frequency of 220 GHz, corresponding to a gain of 37.04 dB and an interaction efficiency of 6.92%. Compared with the conventional SWG TWTs, the PWSWG TWT has higher interaction efficiency and shorter saturation tube length. In conclusion, the PWSWG proposed in this paper can be considered a suitable SWS for high-power THz radiation sources.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Demonstration of a 220-GHz Wideband High Power Low Reflection Folded Waveguide Traveling-Wave Tube;IEEE Transactions on Electron Devices;2024-09

2. Demonstration of a G Band Fillet-trapezoidal Staggered Double-gateTraveling Wave Tube;2024 IEEE International Conference on Plasma Science (ICOPS);2024-06-16

3. Corrugated waveguide with matched phase and group velocities: an extended regime of wave-beam interaction;Optics Express;2024-06-11

4. An E-plane loaded sine waveguide for G-band traveling wave tube;Journal of Electromagnetic Waves and Applications;2024-06-07

5. W-Band Sine Waveguide TWT Based Upon Power Combining of Four;2024 6th International Conference on Communications, Information System and Computer Engineering (CISCE);2024-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3