Multi-scale feature progressive fusion network for remote sensing image change detection

Author:

Lu Di,Cheng Shuli,Wang Liejun,Song Shiji

Abstract

AbstractPresently, research on deep learning-based change detection (CD) methods has become a hot topic. In particular, feature pyramid networks (FPNs) are widely used in CD tasks to gradually fuse semantic features. However, existing FPN-based CD methods do not correctly detect the complete change region and cannot accurately locate the boundaries of the change region. To solve these problems, a new Multi-Scale Feature Progressive Fusion Network (MFPF-Net) is proposed, which consists of three innovative modules: Layer Feature Fusion Module (LFFM), Multi-Scale Feature Aggregation Module (MSFA), and Multi-Scale Feature Distribution Module (MSFD). Specifically, we first concatenate the features of each layer extracted from the bi-temporal images with their difference maps, and the resulting change maps fuse richer semantic information while effectively representing change regions. Then, the obtained change maps of each layer are directly aggregated, which improves the effective communication and full fusion of feature maps in CD while avoiding the interference of indirect information. Finally, the aggregated feature maps are layered again by pooling and convolution operations, and then a feature fusion strategy with a pyramid structure is used, with layers fused from low to high, to obtain richer contextual information, so that each layer of the layered feature maps has original semantic information and semantic features of other layers. We conducted comprehensive experiments on three publicly available benchmark datasets, CDD, LEVIR-CD, and WHU-CD to verify the effectiveness of the method, and the experimental results show that the method in this paper outperforms other comparative methods.

Funder

The Natural Science Foundation of Xinjiang Uygur Autonomous Region

Tianshan Innovation Team of Xinjiang Uygur Autonomous Region

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3