Fracture detection from Azimuth-dependent seismic inversion in joint time–frequency domain

Author:

Pan Xinpeng,Zhang Dazhou,Zhang Pengfei

Abstract

AbstractDetection of fracture properties can be implemented using azimuth-dependent seismic inversion for optimal model parameters in time or frequency domain. Considering the respective potentials for sensitivities of inversion resolution and anti-noise performance in time and frequency domain, we propose a more robust azimuth-dependent seismic inversion method to achieve fracture detection by combining the Bayesian inference and joint time–frequency-domain inversion theory. Both Cauchy Sparse and low-frequency constraint regularizations are introduced to reduce multi-solvability of model space and improve inversion reliability of model parameters. Synthetic data examples demonstrate that the frequency bandwidth of inversion result is almost the same for time, frequency and joint time–frequency domain inversion in seismic dominant frequency band using the noise-free data, but the frequency bandwidth in joint time–frequency domain is larger than that in time and frequency domains using low- signal-to-noise-ratio (SNR) data. The results of cross-correlation coefficients validate that the joint time–frequency-domain inversion retains both the excellent characteristics of high resolution in frequency-domain inversion and the advantage of strong anti-noise ability in time-domain inversion. A field data example further demonstrates that our proposed inversion approach in joint time–frequency domain may provide a more stable technique for fracture detection in fractured reservoirs.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3