Attractor Ranked Radial Basis Function Network: A Nonparametric Forecasting Approach for Chaotic Dynamic Systems

Author:

Masnadi-Shirazi Maryam,Subramaniam ShankarORCID

Abstract

AbstractThe curse of dimensionality has long been a hurdle in the analysis of complex data in areas such as computational biology, ecology and econometrics. In this work, we present a forecasting algorithm that exploits the dimensionality of data in a nonparametric autoregressive framework. The main idea is that the dynamics of a chaotic dynamical system consisting of multiple time-series can be reconstructed using a combination of different variables. This nonlinear autoregressive algorithm uses multivariate attractors reconstructed as the inputs of a neural network to predict the future. We show that our approach, attractor ranked radial basis function network (AR-RBFN) provides a better forecast than that obtained using other model-free approaches as well as univariate and multivariate autoregressive models using radial basis function networks. We demonstrate this for simulated ecosystem models and a mesocosm experiment. By taking advantage of dimensionality, we show that AR-RBFN overcomes the shortcomings of noisy and short time-series data.

Funder

National Science Foundation

U.S. Department of Health & Human Services | National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3