Accumulation, morpho-physiological and oxidative stress induction by single and binary treatments of fluoride and low molecular weight phthalates in Spirodela polyrhiza L. Schleiden

Author:

Sharma Ritika,Kumari Arpna,Rajput Sneh,Nishu ,Arora Saroj,Rampal Rajkumar,Kaur Rajinder

Abstract

AbstractThe present study examined the interactive effects of fluoride and phthalates on their uptake, generation of reactive oxygen species and activation of antioxidative defence responses in Spirodela polyrhiza L. Schleiden. A hydroponic study was conducted in which S. polyrhiza cultured in Hoagland’s nutrient medium, was exposed to fluoride (50 ppm) and different concentrations viz., 75, 150 300 ppm of diethyl phthalate (DEP) and diallyl phthalate (DAP) individually as well as in combination for the time period of 24, 72, 120 and 168 h respectively. A significant decline in fresh weight, dry to fresh weight ratio, total chlorophyll, carotenoid content and increased anthocyanin content was observed. Fluoride and phthalates was found to be readily accumulated by S. polyrhiza in all the exposure periods. Interestingly, when binary treatments were given in nutrient medium, uptake of both fluoride and phthalate was found to be influenced by each other. In combined treatments, DEP stimulated fluoride uptake, while its own uptake was restricted by fluoride. In contrary to this, fluoride stimulated DAP uptake. Moreover, combined stress further caused significant decrement in carbohydrate, protein content and increment in MDA levels, phenolic content and electrolyte leakage. Nevertheless, phthalates showed more pronounced oxidative stress and growth inhibition compared to fluoride. To cope up with the oxidative damage, enhanced level of antioxidant enzymatic activities was observed in S. polyrhiza under both fluoride and phthalate stress as compared to control. Scanning electron microscope imaging of leaf stomata revealed that combined stress of fluoride with phthalates caused distortion in the shape of guard cells. Confocal micrographs confirmed the generation of reactive oxygen species, cell damage, disruption in membrane integrity, and enhanced levels of glutathione in plant cells. This study focussed on ecotoxicological and interactive significance of fluoride led phthalate uptake or vice versa which was also assumed to confer tolerance attributes.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3