Temporal and fertilizer-dependent dynamics of soil bacterial communities in buckwheat fields under long-term management

Author:

Morigasaki Susumu,Matsui Motomu,Ohtsu Iwao,Doi Yuki,Kawano Yusuke,Nakai Ryosuke,Iwasaki Wataru,Hayashi Hisayoshi,Takaya Naoki

Abstract

AbstractThis study integrated bacterial community and soil chemicals to characterize the soil ecosystem in an open upland field managed by six controlled fertilizer programs using the minimum amount of pesticides. Amplicon sequencing the 16S rRNA gene revealed that inorganic nitrogen fertilizer and compost altered the diversity and structure of the soil bacterial community throughout buckwheat (Fagopyrum esculentum Moench ‘Hitachiakisoba’) cultivation. The bacterial community comprised three clusters that contained bacteria that are prevalent in soils fertilized with nitrogen (cluster 1, 340 taxa), without nitrogen and compost (cluster 2, 234 taxa), and with compost-fertilized (cluster 3, 296 taxa). Cluster 2 contained more taxa in Actinobacteriota and less in Acidobacteriota, and cluster 3 contained more taxa in Gemmatimonadota compared with the other clusters. The most frequent taxa in cluster 1 were within the Chloroflexi phylum. The bacterial community structure correlated with soil chemical properties including pH, total organic carbon, SO42−, soluble Ca2+. A co-occurrence network of bacterial taxa and chemicals identified key bacterial groups comprising the center of a community network that determined topology and dynamics of the network. Temporal dynamics of the bacterial community structure indicated that Burkholderiales were associated with buckwheat ripening, indicating plant-bacteria interaction in the ecosystem.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3