Cardiovascular responses to orthostasis during a simulated 3-day heatwave

Author:

Fisher Jason T.,Ciuha Urša,Ioannou Leonidas G.,Simpson Lydia L.,Possnig Carmen,Lawley Justin,Mekjavic Igor B.

Abstract

AbstractGlobal warming has caused an increase in the frequency, duration, and intensity of summer heatwaves (HWs). Prolonged exposure to hot environments and orthostasis may cause conflicting demands of thermoregulation and blood pressure regulation on the vasomotor system, potentially contributing to cardiovascular complications and occupational heat strain. This study assessed cardiovascular and skin blood flow (SkBF) responses to orthostasis before, during and after a 3-day simulated HW. Seven male participants maintained a standard work/rest schedule for nine consecutive days split into three 3-day parts; thermoneutral pre-HW (25.4 °C), simulated HW (35.4 °C), thermoneutral post-HW. Gastrointestinal (Tgi) and skin (Tsk) temperatures, cardiovascular responses, and SkBF were monitored during 10-min supine and 10-min 60° head-up tilt (HUT). SkBF, indexed using proximal–distal skin temperature gradient (∆TskP-D), was validated using Laser-Doppler Flowmetry (LDF). The HW significantly increased heart rate, cardiac output and SkBF of the leg in supine; HUT increased SkBF of the arm and leg, and significantly affected all cardiovascular variables besides cardiac output. Significant regional differences in SkBF presented between the arm and leg in all conditions; the arm displaying vasodilation throughout, while the leg vasoconstricted in non-HW before shifting to vasodilation in the HW. Additionally, ∆TskP-D strongly correlated with LDF (r = −.78, p < 0.001). Prolonged HW exposure and orthostasis, individually, elicited significant changes in cardiovascular and SkBF variables. Additionally, varying regional blood flow responses were observed, suggesting the upper and lower vasculature receives differing vasomotor control. Combined cardiovascular alterations and shifts towards vasodilation indicate an increased challenge to industrial workers during HWs.

Funder

Horizon 2020

Agencjia za raziskovalno dejavnost Republike Slovenije

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3