Author:
Wang Chunling,Xing Haoyang,Zheng Baozhan,Yuan Hongyan,Xiao Dan
Abstract
AbstractIn this contribution, we optimize the structure of double-input capacitively coupled contactless conductivity detector (DIC4D) that proposed before by our group and successfully applied it in the capillary electrophoresis of inorganic ion analysis. Furthermore, we present the detail theoretical analysis and simulation to exploring the working mechanism of DIC4D. Compared with C4D, under identical experimental conditions and by using the same current-to-voltage converter, both the theoretical and experimental results suggest that the effectiveness and feasibility of DIC4D. The improved DIC4D diminished the baseline drift effects in C4D, provides lower noise, higher sensitivity and notably stable baseline. The LODs of DIC4D are 1.0 μM for K+ and 1.5 μM for Li+ (S/N = 3). DIC4D provides a better linear relationship (R = 0.997 and 0.998 for K+ and Li+, respectively) with the range of 2.0 μM ~ 2.5 mM.
Publisher
Springer Science and Business Media LLC
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献