Research on the performance of modified blue coke in adsorbing hexavalent chromium

Author:

Wang Hua,Wang Wencheng,Zhang Guotao,Gao Xuchun

Abstract

AbstractTo solve the issue of hexavalent chromium (Cr(VI)) contamination in water bodies, blue coke powder (LC) was chemically changed using potassium hydroxide to create the modified material (GLC), which was then used to treat a Cr(VI)-containing wastewater solution. The differences between the modified and unmodified blue coke’s adsorption characteristics for Cr(VI) were studied, and the impact of pH, starting solution concentration, and adsorption period on the GLC's adsorption performance was investigated. The adsorption behavior of the GLC was analyzed using isothermal adsorption models, kinetic models, and adsorption thermodynamic analysis. The mechanism of Cr(VI) adsorption by the GLC was investigated using characterization techniques such as Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscope (FE-SEM), X-Ray Diffraction (XRD), and X-Ray Photoelectron Spectroscopy (XPS). With the biggest difference in removal rate at pH = 2, which was 2.42 times that of LC, batch adsorption experiments revealed that, under the same adsorption conditions, the GLC always performed better than LC. With a specific surface area that was three times that of LC and an average pore diameter that was 0.67 times that of LC, GLC had a more porous structure than LC. The alteration significantly increased the number of hydroxyls on the surface of GLC by altering the structural makeup of LC. The ideal pH for removing Cr(VI) was 2, and the ideal GLC adsorbent dosage was 2.0 g/L. Pseudo-second-order kinetic (PSO) model and Redlich-Peterson (RP) model can effectively describe the adsorption behavior of GLC for Cr(VI). Physical and chemical adsorption work together to remove Cr(VI) by GLC in a spontaneous, exothermic, and entropy-increasing process, with oxidation–reduction processes playing a key role. GLC is a potent adsorbent that can be used to remove Cr(VI) from aqueous solutions.

Funder

Project of Science and Technology Department of Shaanxi Province

Yulin High-tech Zone Project

Joint Fund Project of Clean Energy Innovation Research Institute of China Science & Technology and Yulin

The Key Laboratory Project of Shaanxi Provincial Education Department in China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3