Author:
Jiang Yuan,Zhu Chenghao,Wang Shangtao,Wang Fusheng,Sun Zhirong
Abstract
AbstractScutellaria baicalensis has been one of the most commonly used traditional Chinese medicinal plants in China for more than 2000 years. The three new varieties cultivated could not be distinguished by morphology before flowering. It will hinder the promotion of later varieties. Chloroplast DNA has been widely used in species identification. Moreover, previous studies have shown that complete chloroplast genome sequences have been suggested as super barcodes for identifying plants. Therefore, we sequenced and annotated the complete chloroplast genomes of three cultivated varieties. The chloroplast genomes of SBW, SBR, and SBP were 151,702 bp, 151,799 bp, and 151,876 bp, which contained 85 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. The analysis of the repeat sequences, codon usage, and comparison of chloroplast genomes shared a high degree of conservation. However, the sliding window results show significant differences among the three cultivated varieties in matK-rps16 and petA-psbJ. And we found that the matK-rps16 sequence can be used as a barcode for the identification of three varieties. In addition, the complete chloroplast genome contains more variations and can be used as a super-barcode to identify these three cultivated varieties. Based on the protein-coding genes, the phylogenetic tree demonstrated that SBP was more closely related to SBW, in the three cultivated varieties. Interestingly, we found that S. baicalensis and S. rehderiana are closely related, which provides new ideas for the development of S. baicalensis. The divergence time analysis showed that the three cultivated varieties diverged at about 0.10 Mya. Overall, this study showed that the complete chloroplast genome could be used as a super-barcode to identify three cultivated varieties of S. baicalensis and provide biological information, and it also contributes to bioprospecting.
Funder
Dingxi city science and technology plan project
National modern agricultural industrial technology system project
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献