Identification of three cultivated varieties of Scutellaria baicalensis using the complete chloroplast genome as a super-barcode

Author:

Jiang Yuan,Zhu Chenghao,Wang Shangtao,Wang Fusheng,Sun Zhirong

Abstract

AbstractScutellaria baicalensis has been one of the most commonly used traditional Chinese medicinal plants in China for more than 2000 years. The three new varieties cultivated could not be distinguished by morphology before flowering. It will hinder the promotion of later varieties. Chloroplast DNA has been widely used in species identification. Moreover, previous studies have shown that complete chloroplast genome sequences have been suggested as super barcodes for identifying plants. Therefore, we sequenced and annotated the complete chloroplast genomes of three cultivated varieties. The chloroplast genomes of SBW, SBR, and SBP were 151,702 bp, 151,799 bp, and 151,876 bp, which contained 85 protein-coding genes, 36 tRNA genes, and 8 rRNA genes. The analysis of the repeat sequences, codon usage, and comparison of chloroplast genomes shared a high degree of conservation. However, the sliding window results show significant differences among the three cultivated varieties in matK-rps16 and petA-psbJ. And we found that the matK-rps16 sequence can be used as a barcode for the identification of three varieties. In addition, the complete chloroplast genome contains more variations and can be used as a super-barcode to identify these three cultivated varieties. Based on the protein-coding genes, the phylogenetic tree demonstrated that SBP was more closely related to SBW, in the three cultivated varieties. Interestingly, we found that S. baicalensis and S. rehderiana are closely related, which provides new ideas for the development of S. baicalensis. The divergence time analysis showed that the three cultivated varieties diverged at about 0.10 Mya. Overall, this study showed that the complete chloroplast genome could be used as a super-barcode to identify three cultivated varieties of S. baicalensis and provide biological information, and it also contributes to bioprospecting.

Funder

Dingxi city science and technology plan project

National modern agricultural industrial technology system project

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3