Urinary bio-monitoring of amphetamine derivatives by needle trap device packed with the zirconium-based metal–organic framework

Author:

Rahimpoor Razzagh,Firoozichahak Ali,Alizadeh Saber,Nematollahi Davood

Abstract

AbstractIn this research, zirconium-based metal–organic framework was utilized as a novel and efficient porous adsorbent for headspace extraction of Amphetamine, Methamphetamine, and Fenfluramine from the urine samples by a needle trap device (NTD). The Zr-UiO-66-PDC was electrosynthesized at the green conditions and characterized by various analyses such as FT-IR, XRD, FE-SEM, EDS, and elemental mapping techniques. Then, the effective parameters on the NTD efficiency such as salt content, pH, extraction/desorption temperature and time were evaluated and optimized by response surface methodology. The optimal extraction of amphetamine compounds was accomplished in 50 min at 70 ºC at the situation with NaCl content of 27% and pH: 11.90. The limit of detection, and limit of quantification factors were determined to be 0.06–0.09 and 0.5–0.8 ng mL−1, respectively. Furthermore, the precision and accuracy (intra- and inter-day) of the employed procedure in the term of relative standard deviation (RSD) were calculated in the range of 8.0–9.0% and 6.8–9.8%, respectively. Also, the recovery percent of the extracted analytes were concluded in the range of 95.0–97.0% after 10 days from the sampling and storage at 4 °C. Finally, the proposed procedure was involved in the analysis of amphetamine compounds in the real urine samples. These results were proved the proposed Zr-UiO-66-PDC@HS-NTD technique coupled with GC-FID can be used as an eco-friendly, fast-response, sensitive, and efficient drug test procedure for trace analysis of the amphetamine compounds in urine samples.

Funder

Gonabad University of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3