Counting cells in motion by quantitative real-time magnetic particle imaging

Author:

Remmo Amani,Kosch Olaf,Kampen Lena,Ludwig Antje,Wiekhorst Frank,Löwa Norbert

Abstract

AbstractMagnetic Particle Imaging (MPI) is an advanced and powerful imaging modality for visualization and quantitative real-time detection of magnetic nanoparticles (MNPs). This opens the possibility of tracking cells in vivo once they have been loaded by MNPs. Imaging modalities such as optical imaging, X-ray computed tomography (CT), positron emission tomography (PET), single photon emission computed tomography (SPECT), and magnetic resonance imaging (MRI) face limitations, from depth of penetration and radiation exposure to resolution and quantification accuracy. MPI addresses these challenges, enabling radiation-free tracking of MNP-loaded cells with precise quantification. However, the real-time tracking of MNP-loaded cells with MPI has not been demonstrated yet. This study establishes real-time quantitative tracking of MNP-loaded cells. Therefore, THP-1 monocytes were loaded with three different MNP systems, including the MPI gold standard Resovist and Synomag. The real-time MPI experiments reveal different MPI resolution behaviors of the three MNP systems after cellular uptake. Real-time quantitative imaging was achieved by time-resolved cell number determination and comparison with the number of inserted cells. About 95% of the inserted cells were successfully tracked in a controlled phantom environment. These results underline the potential of MPI for real-time investigation of cell migration and interaction with tissue in vivo.

Funder

Deutsche Forschungsgemeinschaft

Sonderforschungsbereich

Physikalisch-Technische Bundesanstalt (PTB)

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3