Differential gene expression analysis based on linear mixed model corrects false positive inflation for studying quantitative traits

Author:

Tang Shizhen,Buchman Aron S.,Wang Yanling,Avey Denis,Xu Jishu,Tasaki Shinya,Bennett David A.,Zheng Qi,Yang Jingjing

Abstract

AbstractDifferential gene expression (DGE) analysis has been widely employed to identify genes expressed differentially with respect to a trait of interest using RNA sequencing (RNA-Seq) data. Recent RNA-Seq data with large samples pose challenges to existing DGE methods, which were mainly developed for dichotomous traits and small sample sizes. Especially, existing DGE methods are likely to result in inflated false positive rates. To address this gap, we employed a linear mixed model (LMM) that has been widely used in genetic association studies for DGE analysis of quantitative traits. We first applied the LMM method to the discovery RNA-Seq data of dorsolateral prefrontal cortex (DLPFC) tissue (n = 632) with four continuous measures of Alzheimer’s Disease (AD) cognitive and neuropathologic traits. The quantile–quantile plots of p-values showed that false positive rates were well calibrated by LMM, whereas other methods not accounting for sample-specific mixed effects led to serious inflation. LMM identified 37 potentially significant genes with differential expression in DLPFC for at least one of the AD traits, 17 of which were replicated in the additional RNA-Seq data of DLPFC, supplemental motor area, spinal cord, and muscle tissues. This application study showed not only well calibrated DGE results by LMM, but also possibly shared gene regulatory mechanisms of AD traits across different relevant tissues.

Funder

National Institutes of Health

National Institute of Health

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3