Apatinib weakens proliferation, migration, invasion, and angiogenesis of thyroid cancer cells through downregulating pyruvate kinase M2

Author:

Yang Xia,Li Wenhong,Han Xiaoying,Wang Jiao,Dai Jianjian,Ye Xin,Meng Min

Abstract

AbstractThyroid cancer (TC) is the most frequent malignancy of the endocrine system. Apatinib, as an anti-angiogenic agent, has been applied in the therapy of several cancers. However, the function and mechanism of Apatinib in TC have not been clearly elucidated. After processing with Apatinib alone or combined PKM2 overexpression plasmids, cell proliferation, migration, and invasion were analyzed by EdU staining, CCK-8, wound healing, and Transwell. Meanwhile. HUVECs were incubated with the conditioned medium prepared from cell culture medium, and tube formation and VEGFR2 expression in HUVECs were examined using tube formation and immunofluorescence (IF) assays. Besides, we established a nude mouse xenograft model by lentivirus-mediated PKM2 shRNAs, and tested the growth of tumors; the pathological structure was analyzed with H&E staining. And the expressions of N-cadherin, Vimentin, E-cadherin, PKM2, VEGFA, VEGFR2, and Ki67 were determined by immunohistochemistry or Western blot. Apatinib could prominently suppress proliferation, migration, invasion, and HUVEC tube formation in SW579 and TPC-1 cells. Besides, we discovered that Apatinib had a significant inhibitory role on the expression of pyruvate kinase M2 (PKM2) in TC cells. And PKM2 overexpression also could notably reverse Apatinib-mediated inhibition of TC progression. Moreover, PKM2 shRNAs were applied to TC xenografts, resulting in significant reduction in tumor volume and suppression of angiogenesis-related protein expression. In summary, Apatinib has a regulatory role in TC progression, and Apatinib can block cancer cell angiogenesis by downregulating PKM2. This will provide a theoretical basis for therapy of TC.

Funder

the Natural Foundation of Shandong Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3