Forecasting Sauter mean droplet size and examining the range of droplet sizes in a Tenova liquid–liquid extraction column

Author:

Rahimpour Neshat,Bahmanyar Hossein,Hemmati Alireza,Asadollahzadeh Mehdi

Abstract

AbstractA new type of Tenova pulsed extraction column was introduced in 2017. It is the newest generation of pulsed columns. Due to the internal equipment of this column and the lack of moving parts and the simplicity and speed of repairs and maintenance, it has been the focus of researchers in recent years. No correlations for predicting the mean drop size and drop size distribution of the Tenova column have been reported. The Sauter mean drop diameter and drop size distribution are investigated for a Tenova pulsed column with a diameter and an active height of 7.4 and 73 cm, respectively. Three standard chemical systems of isobutyl acetate-water, isobutanol-water, and toluene-water have been used. The effects of pulse intensity, dispersed and continuous phase flow rates have been taken into account. In each experiment, 200–300 drops have been analyzed in a total of 10,000 drops. The investigation covered a spectrum of physical properties, notably surface tension (within a range of 1.75–36 mN/m). Operating conditions including pulse intensity (in the range of 0.2–2 cm/s) and the flow rate of continuous and dispersed phases (in the range of 8–30 L/h) have been investigated. Methods based on artificial intelligence (AI) such as multilayer perceptron neural networks and gene expression programming were combined with a dimensional analysis approach to provide a new approach to estimating the mean drop diameter (d32). Experimental results have been compared with the equations found by other researchers in similar columns. The variation of drop size distribution has also been experimentally obtained.Methods based on artificial intelligence (AI) such as multilayer perceptron neural networks and gene expression programming were combined with a dimensional analysis approach to provide a new approach to estimating the mean drop diameter (d32). Experimental results have been compared with the equations found by other researchers in similar columns. The variation of drop size distribution has also been experimentally obtained.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3