Inhibition of cell cycle-dependent hyphal and biofilm formation by a novel cytochalasin 19,20‑epoxycytochalasin Q in Candida albicans

Author:

Watchaputi Kwanrutai,Jayasekara L. A. Channa Bhathiya,Ratanakhanokchai Khanok,Soontorngun Nitnipa

Abstract

AbstractBiofilm-mediated drug resistance is a key virulence factor of pathogenic microbes that cause a serious global health threat especially in immunocompromised individuals. Here, we investigated the antihyphal and antibiofilm activity of 19,20‑epoxycytochalasin Q (ECQ), a cytochalasin actin inhibitor isolated from medicinal mushroom Xylaria sp. BCC1067 against Candida albicans. Remarkably, 256 µg/ml of ECQ inhibited over 95% of C. albicans hyphal formation after 24 h-treatment. Combined ECQ and lipid-based biosurfactant effectively enhanced the antihyphal activity, lowering required ECQ concentrations. Hyphal fragmentation and reduction of biofilm biomass, shown by SEM and AFM visualization of ECQ-treated biofilms, were well corelated to the reduced metabolic activities of young and 24 h-preformed C. albicans biofilms. Induced intracellular accumulation of reactive oxygen species (ROS) also occurred in accompany with the leakage of shrunken cell membrane and defective cell wall at increasing ECQ concentrations. Transcriptomic analyses via RNA-sequencing revealed a massive change (> 1300 genes) in various biological pathways, following ECQ-treatment. Coordinated expression of genes, associated with cellular response to drugs, filamentous growth, cell adhesion, biofilm formation, cytoskeleton organization, cell division cycle, lipid and cell wall metabolisms was confirmed via qRT-PCR. Protein–protein association tool identified coupled expression between key regulators of cell division cyclin-dependent kinases (Cdc19/28) and a gamma-tubulin (Tub4). They coordinated ECQ-dependent hyphal specific gene targets of Ume6 and Tec1 during different phases of cell division. Thus, we first highlight the antihyphal and antibiofilm property of the novel antifungal agent ECQ against one of the most important life-threatening fungal pathogens by providing its key mechanistic detail in biofilm-related fungal infection.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3