Genetic dissection of heterosis of indica–japonica by introgression line, recombinant inbred line and their testcross populations

Author:

Yang Wenqing,Zhang Fan,Zafar Sundus,Wang Junmin,Lu Huajin,Naveed Shahzad,Lou Jue,Xu Jianlong

Abstract

AbstractThe successful implementation of heterosis in rice has significantly enhanced rice productivity, but the genetic basis of heterosis in rice remains unclear. To understand the genetic basis of heterosis in rice, main-effect and epistatic quantitative trait loci (QTLs) associated with heterosis for grain yield-related traits in the four related rice mapping populations derived from Xiushui09 (XS09) (japonica) and IR2061 (indica), were dissected using single nucleotide polymorphism bin maps and replicated phenotyping experiments under two locations. Most mid-parent heterosis of testcross F1s (TCF1s) of XS09 background introgression lines (XSILs) with Peiai64S were significantly higher than those of TCF1s of recombinant inbred lines (RILs) with PA64S at two locations, suggesting that the effects of heterosis was influenced by the proportion of introgression of IR2061’s genome into XS09 background. A total of 81 main-effect QTLs (M-QTLs) and 41 epistatic QTLs were identified for the phenotypic variations of four traits of RILs and XSILs, TCF1s and absolute mid-parent heterosis in two locations. Furthermore, overdominance and underdominance were detected to play predominant effects on most traits in this study, suggesting overdominance and underdominance as well as epistasis are the main genetic bases of heterosis in rice. Some M-QTLs exhibiting positive overdominance effects such as qPN1.2, qPN1.5 and qPN4.3 for increased panicle number per plant, qGYP9 and qGYP12.1 for increased grain yield per plant, and qTGW3.4 and qTGW8.2 for enhanced 1000-grain weight would be highly valuable for breeding to enhance grain yield of hybrid rice by marker-assisted selection.

Funder

The Key Project of New Variety Development from Zhejiang Province Science & Technology

The Project of New Variety Development Wenzhou Collaboration Program

The Agricultural Science and Technology Innovation Program and the Cooperation and Innovation Mission

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3