Prediction and experimental validation approach to improve performance of novel hybrid bio-inspired 3D printed lattice structures using artificial neural networks

Author:

Doodi Ramakrishna,Gunji Bala Murali

Abstract

AbstractNovel Cellular lattice structures with lightweight designs are gaining more interest in the automobile and aerospace sectors. Additive manufacturing technologies have focused on designing and manufacturing cellular structures in recent years, increasing the versatility of these structures because of the significant benefits like high strength-to-weight ratio. In this research, a novel hybrid type of cellular lattice structure is designed, bio-inspired from the circular patterns seen in the bamboo tree structure and the overlapping patterns found on the dermal layers of fish-like species. The unit lattice cell with varied overlapping areas with a unit cell wall thickness of 0.4 to 0.6 mm. Fusion 360 software models the lattice structures with a constant volume of 40 × 40 × 40 mm. Utilizing the stereolithography (SLA) process and a vat polymerization type three-dimensional printing equipment is used to fabricate the 3D printed specimens. A quasi-static compression test was carried out on all 3D printed specimens, and the energy absorption capacity of each structure was calculated. Machine learning technique like the Artificial neural network (ANN) with Levenberg–Marquardt Algorithm (ANN-LM) was applied to the present research to predict the energy absorption of the lattice structure with parameters such as overlapping area, wall thickness, and size of the unit cell. The k-fold cross-validation technique was applied in the training phase to get the best training results. Overall, the results obtained using the ANN tool are validated and can be a favourable tool for lattice energy prediction with available data.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3