Detecting neurodevelopmental trajectories in congenital heart diseases with a machine-learning approach

Author:

Cainelli Elisa,Bisiacchi Patrizia S.,Cogo Paola,Padalino Massimo,Simonato Manuela,Vergine Michela,Lanera Corrado,Vedovelli Luca

Abstract

AbstractWe aimed to delineate the neuropsychological and psychopathological profiles of children with congenital heart disease (CHD) and look for associations with clinical parameters. We conducted a prospective observational study in children with CHD who underwent cardiac surgery within five years of age. At least 18 months after cardiac surgery, we performed an extensive neuropsychological (intelligence, language, attention, executive function, memory, social skills) and psychopathological assessment, implementing a machine-learning approach for clustering and influencing variable classification. We examined 74 children (37 with CHD and 37 age-matched controls). Group comparisons have shown differences in many domains: intelligence, language, executive skills, and memory. From CHD questionnaires, we identified two clinical subtypes of psychopathological profiles: a small subgroup with high symptoms of psychopathology and a wider subgroup of patients with ADHD-like profiles. No associations with the considered clinical parameters were found. CHD patients are prone to high interindividual variability in neuropsychological and psychological outcomes, depending on many factors that are difficult to control and study. Unfortunately, these dysfunctions are under-recognized by clinicians. Given that brain maturation continues through childhood, providing a significant window for recovery, there is a need for a lifespan approach to optimize the outcome trajectory for patients with CHD.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3