Author:
Chen Qingquan,Hu Yiming,Lin Wen,Huang Zhimin,Li Jiaxin,Lu Haibin,Dai Rongrong,You Liuxia
Abstract
AbstractPancreatic cancer is a commonly occurring malignant tumor, with pancreatic ductal carcinoma (PDAC) accounting for approximately 95% of cases. According of its poor prognosis, identifying prognostic factors of pancreatic ductal carcinoma can provide physicians with a reliable theoretical foundation when predicting patient survival. This study aimed to analyze the impact of marital status on survival outcomes of PDAC patients using propensity score matching and machine learning. The goal was to develop a prognosis prediction model specific to married patients with PDAC. We extracted a total of 206,968 patient records of pancreatic cancer from the SEER database. To ensure the baseline characteristics of married and unmarried individuals were balanced, we used a 1:1 propensity matching score. We then conducted Kaplan–Meier analysis and Cox proportional-hazards regression to examine the impact of marital status on PDAC survival before and after matching. Additionally, we developed machine learning models to predict 5-year CSS and OS for married patients with PDAC specifically. In total, 24,044 PDAC patients were included in this study. After 1:1 propensity matching, 8043 married patients and 8,043 unmarried patients were successfully enrolled. Multivariate analysis and the Kaplan–Meier curves demonstrated that unmarried individuals had a poorer survival rate than their married counterparts. Among the algorithms tested, the random forest performed the best, with 0.734 5-year CSS and 0.795 5-year OS AUC. This study found a significant association between marital status and survival in PDAC patients. Married patients had the best prognosis, while widowed patients had the worst. The random forest is a reliable model for predicting survival in married patients with PDAC.
Funder
Fujian Province young and middle-aged teachers education and scientific research project
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献