A neural network for the detection of soccer headers from wearable sensor data

Author:

Kern Jan,Lober Thomas,Hermsdörfer Joachim,Endo Satoshi

Abstract

AbstractTo investigate the proposed association between soccer heading and deleterious brain changes, an accurate quantification of heading exposure is crucial. While wearable sensors constitute a popular means for this task, available systems typically overestimate the number of headers by poorly discriminating true impacts from spurious recordings. This study investigated the utility of a neural network for automatically detecting soccer headers from kinematic time series data obtained by wearable sensors. During 26 matches, 27 female soccer players wore head impacts sensors to register on-field impact events (> 8 g), which were labelled as valid headers (VH) or non-headers (NH) upon video review. Of these ground truth data, subsets of 49% and 21% each were used to train and validate a Long Short-Term Memory (LSTM) neural network in order to classify sensor recordings as either VH or NH based on their characteristic linear acceleration features. When tested on a balanced dataset comprising 271 VHs and NHs (which corresponds to 30% and 1.4% of ground truth VHs and NHs, respectively), the network showed very good overall classification performance by reaching scores of more than 90% across all metrics. When testing was performed on an unbalanced dataset comprising 271 VHs and 5743 NHs (i.e., 30% of ground truth VHs and NHs, respectively), as typically obtained in real-life settings, the model still achieved over 90% sensitivity and specificity, but only 42% precision, which would result in an overestimation of soccer players’ true heading exposure. Although classification performance suffered from the considerable class imbalance between actual headers and non-headers, this study demonstrates the general ability of a data-driven deep learning network to automatically classify soccer headers based on their linear acceleration profiles.

Funder

Bundesinstitut für Sportwissenschaft

Horizon 2020

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3