Surface-dependent quenching of Qdot emission can be a new tool for high resolution measurements

Author:

Okura Kaoru,Tatsumi Hitoshi

Abstract

AbstractSingle quantum dots (Qdots) are often used in the field of single-molecule imaging. Qdots are sensitive to changes in the physical interactions between the Qdots and the surrounding materials. However, the spectral changes in a single Qdot emission have not been studied in detail. Low-temperature plasma treatment of glass surfaces reduced the intensity of the 655 nm emission peak of Qdot655 on glass surfaces, but did not significantly change the intensity of the 580 nm emission. Silanization of the glass surface increases the thickness of the silane layer, and the 655 nm emission peak increased. When single Qdots on the untreated glass were imaged, plasma treatment decreased the intensity of red emission and increased yellow emission. When Qdots were brought close to the glass surface in the range of 28–0 nm, the red emission intensity decreased and the yellow emission intensity increased slightly. When single actin filaments were labeled with Qdots, fluctuations of the yellow and red emission of the Qdot were detected, which reflected the very small distance changes. Our results indicate that the local interaction of Qdots with the glass surface improves the spatial and temporal resolution of optical measurements of biomolecules labeled with Qdots.

Funder

Advanced Research & Development Programs for Medical Innovation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3