Translating CO$$_2$$ variability in a plant growth system into plant dynamics

Author:

Ahn Tae In,Jung Je Hyeong,Kim Hyoung Seok,Lee Ju Young

Abstract

AbstractPlant growth occurs owing to the continuous interactions between environmental and genetic factors, and the analysis of plant growth provides crucial information on plant responses. Recent agronomic and analytical methodologies for plant growth require various channels for capturing broader and more dynamic plant traits. In this study, we provide a method of non-invasive growth analyses by translating CO$$_2$$ 2 variability around a plant. We hypothesized that the cumulative coefficient of variation (CCV) of plant-driven ambient CO$$_2$$ 2 variation in a plant growth system could yield a numerical indicator that is connected to the plant growth dynamics. Using the system outside-plant growth system-plant coupled dynamic model, we found that the CCV could translate dynamic plant growth under environmental and biophysical constraints. Furthermore, we experimentally demonstrated the application of CCV by using non-airtight growth chamber systems. Our findings may enrich plant growth information channels and assist growers or researchers to analyze plant growth comprehensively.

Funder

Ministry of Agriculture, Food and Rural Affairs

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3